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Lattice-Boltzmann Simulation of Particle Suspensions
in Shear Flow
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Inclusion of short-range particle–particle interactions for increased numerical
stability in a lattice-Boltzmann code for particle-fluid suspensions, and han-
dling of the particle phase for an effective implementation of the code for par-
allel computing, are discussed and formulated. In order to better understand
the origin of the shear-thickening behavior observed in real suspensions, two
simplified cases are considered with the code thus developed. A chain-like clus-
ter of suspended particles is shown to increase the momentum transfer in a
shear flow between channel walls, and thereby the effective viscosity of the sus-
pension in comparison with random configurations of particles. A single sus-
pended particle is also shown to increase the effective viscosity under shear
flow of this simple suspension for particle Reynolds numbers above unity, due
to inertial effects that change the flow configuration around the particle. These
mechanisms are expected to carry over to large-scale particle-fluid suspensions.
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1. INTRODUCTION

Particulate matter suspended in a carrier fluid is transported in many
industrial processes. Mixtures of fluid and particles are also met in various
natural processes, important examples including blood flow and soil trans-
port by rivers and winds. Even if the carrier fluid itself were Newtonian,
inclusion of the solid particles results in a variety of non-Newtonian
behavior. One of its more striking effects is shear thickening that is
especially pronounced in suspensions of high solid-volume fraction under
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large shear rate. Abrupt increase in shear viscosity can have unpredictable
effects, e.g., in industrial processes, which often decrease their efficiency.(1)

In spite of being a long-lasting research topic, there probably are
more open than resolved issues in the rheology of suspensions. The ori-
gin of the shear-thickening behavior, e.g., is still largely unknown. The
most probable explanation so far seems to involve formation of particle
clusters which act as channels for momentum transfer, but the mechanism
by which they are formed has not been clarified. Another phenomenon
related to shear thickening, which however has attracted less attention,
seems to be inertial effects that become noticeable for particle Reynolds
numbers above unity.

The rheology of suspensions can be studied by experiments and
theoretical models, and recently also by computer simulations. To get a
realistic picture of the complex mesoscopic dynamics of the suspensions,
three-dimensional systems with large numbers of particles are however
needed. Continuous development of computing power has made it possi-
ble to meet this requirement, but to this end parallel computing must be
used.

Several methods have been developed to simulate suspension flows. So
far the largest and maybe the most realistic suspension simulations have
been performed with the lattice-Boltzmann (LB) method (cf. ref. 2) that
appears to be efficient for simulating various multiphase-flow problems.(3)

One of the main advantages of the LB method is the spatial locality of the
algorithm, which makes it ideal for parallel computing. Inclusion of large,
in comparison with lattice spacing, solid particles unfortunately diminishes
the spatial locality of the method, and thereby complicates its paralleliza-
tion. Shared memory would be quite simple to implement, but an efficient
code capable of utilizing a large number of processors requires the use of
message passing.

In this paper, we first discuss the application of the LB method to
suspension simulations. Then, parallelization of the LB algorithm is dis-
cussed together with the resulting scaling properties of the code. Next we
demonstrate that large-scale simulations of a suspension predict correctly
its viscosity. Then we discuss in more detail two simple test cases in which
the effect on shear stress of a single cluster of particles, and the inertial
effects due to a single suspended particle, are respectively analyzed. Finally
we summarize and discuss our results.

2. LB METHOD FOR SUSPENSION SIMULATIONS

The LB model most widely used is the Lattice Bhatnagar–Gross–
Krook (LBGK) single-relaxation-time model. This model is based on a
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discrete Boltzmann equation that is usually solved on a regular lattice. The
dynamics of the method is given by the LB equation

fi(r + ci , t +1)=fi(r, t)+ 1
τ

[
f

eq
i (r, t)−fi(r, t)

]
, (1)

in which fi is the distribution function of the fluid particles moving in the ci

direction, and f
eq
i (r, t) is the equilibrium distribution towards which the dis-

tribution functions are relaxed. This relation Eq. (1) is characterized by the
relaxation time τ . The density ρ and velocity u of the fluid are determined
at each lattice node from the first and second velocity moments of the dis-
tribution function fi , respectively. We use the three-dimensional 19-velocity
model (D3Q19) in our simulations.(4) An attractive feature of the LB model
is the easy computation of the deviatoric stress tensor from the non-equi-
librium parts of the distribution functions by

σ ′
αβ =

(
1− 1

2τ

)∑

i

[
fi(r, t)−f

eq
i (r, t)

]
ciαciβ . (2)

We utilize this property in our stress analysis of suspensions in Section 4.
One of the advantages of the LB method is the easy implementa-

tion of the fluid–solid no-slip boundary condition by using the heuris-
tic bounce-back rule. This approach is usually accurate enough regarding
the other sources of error inherent in typical multiphase simulations. The
bounce backs of the distribution functions are usually performed on the
lattice links, i.e., the distributions are reflected at the midpoints between
the fluid and solid nodes in the advection phase of the LB algorithm.

A pioneering work on applying the LB method to suspension simula-
tions was that by Ladd,(5) who generalized the bounce-back rule for mov-
ing boundaries,

fi(r, t +1)=f−i (r, t)+ 2ρti

c2
s

(uw · ci ). (3)

Here −i denotes the link opposite to i in the lattice, uw is the local veloc-
ity of the moving boundary, ti is a weight factor related to direction i,(4)

and cs is the speed of sound. Equation (3) makes the simulation of mov-
ing particles straightforward. It does not only describe the action of the
particles on the fluid, but can also be used to compute the hydrodynamic
forces and torques acting on the particles at a very small computational
cost. When these two quantities are known, the velocities, angular veloc-
ities, and positions of the particles can be computed by using methods
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familiar from molecular dynamics.(6) In the original Ladd model parti-
cles were considered as solid shells filled by the LB fluid.(5) An alternative
scheme without the interior fluid has been proposed by Aidun and Lu,(7)

and we use this scheme here in our simulations.
When two particles are close enough to each other, there are no fluid

nodes left between them. As a result of this, an unphysically low pres-
sure appears between the particles if a suspension model without the inte-
rior fluid is used. To eliminate this problem, we have added ‘virtual’ fluid
links (cf. Fig. 1) between the particles, which are obtained from the rele-
vant equilibrium distribution function in which the velocity of the fluid–
solid boundary and the average fluid density have been used. Virtual-fluid
links are only used when forces on adjacent particles in close contact are
calculated. After the bounce back, all virtual links remain inside the parti-
cle, so the related virtual-fluid populations do not escape into the real fluid
as they are not connected to fluid nodes.

It is obvious that the LB method is incapable of giving correct hydro-
dynamic (lubrication) forces between particles in close contact.(8,9) It is
therefore necessary to add a lubrication-force correction to this kind of
particle pairs. We have used the correction scheme proposed by Nguyen
and Ladd(8) in which an extra two-body force of the form

Flub =
{

−6πµ
a2

1a2
2

(a1+a2)
2

(
1
h

− 1
hN

)
U12 · R̂12R̂12, h<hN

0, h>hN

(4)

is used. Here µ is the dynamic viscosity of the fluid, a1 and a2 are the
radii of the two particles, h is the shortest distance between the surfaces
of two adjacent particles, hN is a cut-off distance below which correction

A

B

Fig. 1. An illustration of virtual-fluid links in a two-dimensional case. The virtual links
inside particle B, which are seen by particle A, are shown.
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is used, U12 =U1 −U2 is the velocity difference between the particles, and
R̂12 is a unit vector from the center of particle 1 to that of particle 2. At
small interparticle distances this divergent correction can, however, lead to
high accelerations and velocities and thereby to numerical instability, if the
force is explicitly applied on the particles. On the other hand, an implicit
updating of particle velocities also leads to numerical problems as it has
the complexity of O(n3).(8) We have solved this problem by adding the
lubrication correction in an explicit manner, but have also set an upper
limit to the force. In this way we can prevent problems arising from too
large particle accelerations. Also, the rules of elastic collision are used if
the particles come in near contact. With these manoeuvres only, particle
overlaps may however occur.(10) To this end we added a small short-range
velocity-independent repulsive force. This force is needed mainly for dense
suspension, especially when flows with high shear rates are simulated. In
other cases particle configurations hardly ever evolve such that this force
needs to be added. The actual value of the force depends on the simula-
tion parameters, but an acceleration of the order of 10−3 (in lattice units)
is typically enough to keep all particles separated.

3. PARALLELIZATION

Suspension simulations with large numbers of particles require large
computational grids and thus a lot of memory. Also, hundreds of thou-
sands time steps are needed before the system has reached the steady state,
and has as well been monitored over several characteristic time scales to
ensure statistical reliability of the results. To keep the simulation times
reasonable and to meet the memory requirements set by the system size,
simulations are typically executed on parallel systems.

The fluid phase is easily parallelized by dividing the computational
grid into cuboid subdomains, each handled by a processor dedicated to
this purpose. Due to the spatial locality of the LB algorithm, informa-
tion exchange is only needed between nodes at opposite sides of a bound-
ary between two subdomains, and the computational overhead is thus
small.(11) Unfortunately, inclusion of solid particles in the LB fluid compli-
cates the implementation of the method for parallel computers. In a three-
dimensional space composed of cuboid subdomains, e.g., a particle can
be partially located in eight different subdomains. Special care is therefore
needed to ensure that the good scalability of the LB method is preserved.

We have parallelized our suspension code using the message passing
interface (MPI). Every particle has its dedicated control processor accord-
ing to the subdomain where the center of the particle is located. If the
particle is partially located in other subdomains, its replica is sent to the
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Fig. 2. Scaling behavior of a system of 1293 grid nodes and 5385 particles.

processors dedicated to these subdomains.(12) Every processor computes
the forces and torques acting on all the particles located at least partly
in its subdomain. Then the forces and torques determined for the repli-
cas are sent to the control processors of the particle. Finally, each proces-
sor updates the velocities, angular velocities, and positions of the particles
that are under its control. If the center of a particle crosses the bound-
ary of two subdomains, the control of this particle is handed over to the
corresponding processor.

We tested the scaling behavior of our code on a 1293 grid with 5385
particles (diameter six lattice units). This is a typical number of particles
in our simulations in which good discretization of the particles is needed
for our momentum-transfer analysis. Test runs were done on an IBM p690
system with IBM Power4 processors. The scaling results for one-dimen-
sional cartesian topology (slice decomposition) are shown in Fig. 2. It is
evident that they are rather good: for the highest number of processors
the efficiency is still 0.80, and an even better scaling was found for three-
dimensional decomposition topologies. We have also performed a prelimi-
nary scaling test for 50,000 small particles with a clearly lower resolution
than the one used otherwise in this work, and the scaling behavior of the
code remained equally good in this case. Notice finally that a paralleliza-
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tion of a LB suspension code similar to ours has also been reported by
Wolffe et al. in ref. 13.

4. RESULTS

All simulations presented in this section were performed in a plane
Couette geometry for non-Brownian spherical particles. Suspensions were
confined between parallel plates, and a shear flow was created by moving
the plates in opposite directions with equal speeds. Periodic boundary con-
ditions were imposed in the other two directions.

For validation of the code, we determined the relative viscosity of
the suspension as a function of the solid-volume fraction. Simulations
were performed in the Stokes regime, and the number of simulated parti-
cles (diameter 12 lattice units) varied from 200 to 2000 depending on the
solid-volume fraction. As is evident from Fig. 3, the result is in excellent
agreement with the semi-empirical Krieger–Dougherty relation(14) for this
system.
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Fig. 3. Relative viscosity of a Stokesian suspension of spherical particles as a function of
solid-volume fraction. Circles denote the simulated data and the solid line is the Krieger–
Dougherty relation.
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For our subsequent analysis we need to determine the shear stresses
in the fluid and solid phases. The total momentum tensor can be expressed
in both phases in the form

�αβ(r, t)=ρuαuβ −σαβ, (5)

where ρ is the density, u the velocity, and σαβ the stress tensor of the
phase in question. The first term on the right-hand side of Eq. (5) gives
the convective stresses. For the fluid phase the second term can be written
as

σαβ =−pδαβ +σ ′
αβ. (6)

Here the first term on the right-hand side gives the contribution of pres-
sure, and the second term that of viscous stresses, to the total fluid stress.
Thus, the total shear force acting on an arbitrary plane in the suspen-
sion is a sum of the solid phase stresses, which are composed of convec-
tive and internal stresses, and fluid phase stresses, which are composed of
convective and viscous parts. Previous two-dimensional studies of momen-
tum transfer in particle suspensions have shown that convective stresses
are negligible in Couette flow at small and moderate Reynolds numbers.(15)

We have made the same observation in our three-dimensional simulations,
and these stresses will be neglected in the following. The viscous fluid
stresses can be directly determined from Eq. (2), and the internal parti-
cle stresses due to pressure and viscous forces can be determined by inte-
grating the fluid stress tensor over the surfaces of the particles.(15) We
show below our results for the relative stresses that are the actual stresses
divided by the stress for the fluid alone.

Changes in the microstructure of the suspension appear to play a
significant role in the rheology of the suspension. An interesting phenom-
enon related to these microstructural changes is the formation of chain-
like clusters of particles, which rotate while being advected in the shear
flow.(16) We now demonstrate the effect on the total shear stress of an ide-
alized rotating chain-like cluster. The artificial cluster considered consists
of seven spherical particles (cf. Fig. 4), the size of the system is 50×160×
111 (vorticity, flow, and gradient directions, respectively), the diameter of
the particles is 14 lattice units, the wall speed is 0.003 lattice units, and the
BGK relaxation parameter is 1. After the particles are placed in their ini-
tial positions their motions are determined as explained in Section 2.

During the whole simulation the shortest distances between the parti-
cles remain larger than one lattice spacing, and the lubrication-force cor-
rection Eq. (4) is not needed. As the model suspension is sheared, the
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Fig. 4. In the left panel the relative wall stress is shown as a function of time for an ide-
alized cluster of suspended particles. The average relative shear stress for a random configu-
rations of the same particles is 1.03. The insets show the orientation of the cluster at differ-
ent instants of time. In the right panel the shear stress of the fluid and of the particle in the
middle plane of the system are shown.

chain-like array of particles rotates, and the shear forces acting on the par-
ticles bring them closer together when the orientation of the array changes
from horizontal to vertical (see Fig. 4). There after interparticle distances
begin to increase when the array continues to rotate further, and the clus-
ter may eventually break up. During this process, the relative shear stress
stays clearly above that for a random configuration of the same particles.
This stress increase results from increased internal stresses of the parti-
cles and the high fluid stresses created between them (see Figs. 4 and 5).
We expect that a qualitatively similar mechanism is behind the shear-
thickening behavior of many real suspensions.

As the last example we consider the shear-thickening behavior of the
simplest possible suspension consisting of only one particle in the middle
of the system. (Notice, however, that there are periodic boundaries.) Due
to its initial position, the particle does not move during the simulation, but
it can rotate. The size of the system is 503 and the diameter of the parti-
cle is 22 lattice units. Simulations were done by using a fixed value for the
viscosity and increasing the shear rate. Our simulations show (see Fig. 6)
that a small but detectable shear thickening is seen even in this very sim-
ple system, when the particle shear Reynolds number exceeds unity. On the
other hand, in simulations with linear equilibrium distribution functions (i.e.
Stokes flow), this effect is absent. Stress analysis in the middle plane shows
that now shear thickening mainly results from increased particle stress due
to pressure forces.
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Fig. 5. Instantaneous fluid shear stresses in a planar cross section of the system with an
idealized cluster.
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Fig. 6. In the left panel the relative shear stress of the suspension is shown as a function of
particle Reynolds number (defined as γ̇ d2/ν with γ̇ the shear rate and d the particle diame-
ter). Also shown are the results for the Stokes flow simulations and the different components
of the stress in the middle plane of the system. In the right panel the angular velocity of
the suspended particle scaled with the shear rate is shown as a function of particle Reynolds
number. The insets in the right panel show schematically the change in the flow field as Rep
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Simultaneously with shear thickening, a change in the flow field
around the particle is also observed. For small shear rates fluid flows
smoothly through the gaps between the particle and the walls. When the
shear rate increases, streamlines begin to increasingly bend in front of
(and behind) the particle, finally making a complete ‘U-turn’. This behav-
ior leads to a situation in which the fluid speed in the gaps is (relatively)
decreased, and the angular velocity of the particle is also reduced (cf. Fig.
6). Similar observations for a single suspended particle have been made in
two dimensions by solving the Navier–Stokes equation with a finite ele-
ment method.(17) Notice also that in two-dimensional LB simulations, a
reduction in the angular velocity of particle clusters has been observed to
be connected with the shear thickening of the suspension.(18)

5. CONCLUSIONS

The basic LB algorithm can very effectively be parallelized, but inclu-
sion of solid particles suspended in the fluid complicates parallelization
with message passing. We showed that good scaling behavior of a par-
allelized suspension code can however be obtained if the particle phase
is properly treated. Handling of the particle–particle interactions at very
short distances so as to increase the numerical stability of the code was
also discussed. For validation purposes we simulated the shear flow in
Couette geometry of a non-Brownian suspension, and found that, as a
function of the solid-volume fraction, in the Stokes regime the simulated
viscosity of the suspension agrees well with the semi-empirical Krieger–
Dougherty relation.

In terms of two simple examples we showed how the LB method
in combination with detailed stress analysis can be used to effectively
study the origin of the observed non-Newtonian behavior of particulate
suspensions. First we considered the effect of a single artificial cluster of
suspended particles on the solid-volume fraction dependence of the viscos-
ity of this suspension, and, in search for inertial effects, analyzed then the
shear-thickening behavior of the simplest possible suspension consisting of
a single suspended particle.

A chain-like cluster of suspended particles rotating in the shear flow
was found to increase the momentum transfer between the channel walls
in comparison with random configurations of particles. This behavior indi-
cates that increased formation of particle clusters for increasing solid-
volume fraction of the suspension will contribute to the related increase
in its viscosity. In the case of the single-particle suspension, inertial effects
that become detectable for particle Reynolds numbers above unity, change
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the flow field around the particle so as to increase the shear stress of the
system.

The stress analyses presented here are by no means restricted to small
systems. In our future work we will extend these analyses to large-scale
suspensions. As already indicated by the results reported here for simpli-
fied systems, detailed analyses of stresses of individual particles and spa-
tial distributions of fluid stresses, are expected to give us new insight into
the complex rheology of real suspensions.
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